輸入您購票時的 Email:

紀懷新 - The LLM Revolution: Implications from Chatbots and Tool-use to Reasoning - 2023 Taiwan AI Academy Conf

VIP / Speakers

« Back to List

The LLM Revolution: Implications from Chatbots and Tool-use to Reasoning

Time / Place:

⏱️ 09/15 (Fri.) 10:30-11:20 at R0 - International Conference Hall

Abstract:

The LLM (Large Language Model) Revolution: Implications from Chatbots and Tool-use to Reasoning

Deep learning is a shock to our field in many ways, yet still many of us were surprised at the incredible performance of Large Language Models (LLMs). LLM uses new deep learning techniques with massively large data sets to understand, predict, summarize, and generate new content. LLMs like ChatGPT and Bard have seen a dramatic increase in their capabilities---generating text that is nearly indistinguishable from human-written text, translating languages with amazing accuracy, and answering your questions in an informative way. This has led to a number of exciting research directions for chatbots, tool-use, and reasoning:

- Chatbots: LLM chatbots that are more engaging and informative than traditional chatbots. First, LLMs can understand the context of a conversation better than ever before, allowing them to provide more relevant and helpful responses. Second, LLMs enable more engaging conversations than traditional chatbots, because they can understand the nuances of human language and respond in a more natural way. For example, LLMs can make jokes, ask questions, and provide feedback. Finally, because LLM chatbots can hold conversations on a wide range of topics, they can eventually learn and adapt to the user's individual preferences.

- Tool-use, Retrieval Augmentation and Multi-modality: LLMs are also being used to create tools that help us with everyday tasks. For example, LLMs can be used to generate code, write emails, and even create presentations. Beyond human-like responses in Chatbots, later LLM innovators realized LLM’s ability to incorporate tool-use, including calling search and recommendation engines, which means that they could effectively become human assistants in synthesizing summaries from web search and recommendation results. Tool-use integration have also enabled multimodal capabilities, which means that the chatbot can produce text, speech, images, and video.

- Reasoning: LLMs are also being used to develop new AI systems that can reason and solve problems. Using Chain-of-Thought approaches, we have shown LLM's ability to break down problems, and then use logical reasoning to solve each of these smaller problems, and then combine the solutions to reach the final answer. LLMs can answer common-sense questions by using their knowledge of the world to reason about the problem, and then use their language skills to generate text that is both creative and informative.

In this talk, I will cover recent advances in these 3 major areas, attempting to draw connections between them, and paint a picture of where major advances might still come from. While the LLM revolution is still in its early stages, it has the potential to revolutionize the way we interact with AI, and make a significant impact on our lives.

😊 Share this page to friends:

Biography:

紀懷新
  • 紀懷新 Ed H. Chi
    Website: https://Edchi.net
  • Google DeepMind / Distinguished Scientist
  • Ed H. Chi is a Distinguished Scientist at Google DeepMind, leading machine learning research teams working on large language models (LaMDA/Bard), neural recommendations, and reliable machine learning. With 39 patents and ~200 research articles, he is also known for research on user behavior in web and social media. As the Research Platform Lead, he helped launched Bard, a conversational AI experiment, and delivered significant improvements for YouTube, News, Ads, Google Play Store at Google with >720 product improvements since 2013.

    Prior to Google, he was Area Manager and Principal Scientist at Xerox Palo Alto Research Center's Augmented Social Cognition Group in researching how social computing systems help groups of people to remember, think and reason. Ed earned his 3 degrees (B.S., M.S., and Ph.D.) in 6.5 years from University of Minnesota. Inducted as an ACM Fellow and into the CHI Academy, he also received a 20-year Test of Time award for research in information visualization. He has been featured and quoted in the press, including the Economist, Time Magazine, LA Times, and the Associated Press. An avid golfer, swimmer, photographer and snowboarder in his spare time, he also has a blackbelt in Taekwondo.

😊 Share this page to friends:

😊 Share this page to friends: